如图,设抛物线方程为直线上任意一点,过M引抛物线的切线,切点分别为A,B。
(1)求证:A,M,B三点的横坐标成等差数列;
(2)已知当M点的坐标为时,,求此时抛物线的方程;
(3)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.
已知函数。(1)求函数的单调区间和值域;
(2)设,函数,若对于任意总存在,使得成立,求实数的取值范围。
如图,等边与直角梯形ABDE所在平面垂直,,AE⊥AB,,O为AB的中点.
|
(1)证明:;
(2)求二面角的余弦值.
18.在一次抗洪抢险中准备用射击的方法引爆从上游漂流而下的一个巨大汽油罐。已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆。每次射击是相互独立的,且命中的概率都是。
(1)求油罐被引爆的概率;
(2)如果引爆或子弹打光停止射击,设射击次数为,求的分布列及数学期望。
已知。(1)若,求的取值集合;(2)求函数的周期及增区间。
有以下命题:①是表面积为的球面(为球心)上的三点,若,则三棱锥的体积为;②二项式的展开式的各项的系数和为;③已知函数在处取得极值,则实数的值是或;④已知点是抛物线的准线与双曲线的两条渐近线所围成的三角形区域(含边界)内的任意一点,则的最大值为9。其中正确命题的序号有__________