计算 ▲
(本题满分16分)
在区间上,如果函数为增函数,而函数为减函数,则称函数为“弱增”函数.已知函数
(1)判断函数在区间上是否为“弱增”函数
(2)设,证明
(3)当时,不等式恒成立,求实数的取值范围
(本题满分16分)
2010年上海世博会某国要建一座八边形(不一定为正八边形)的展馆区(如图),它的主体造型的平面图是由二个相同的矩形和构成的面积为m2的十字型地域,计划在正方形上建一座“观景花坛”,造价为元/m2,在四个矩形上(图中阴影部分)铺花岗岩地坪,造价为元/m2,再在四个空角(如等)上铺草坪,造价为元/m2. 设总造价为元,长为m.
(1)用表示矩形的边的长
(1)试建立与的函数关系
(2)当为何值时,最小?并求这个最小值
已知,
(1)当时
1解关于的不等式
2当时,不等式恒成立,求的取值范围
(2)证明不等式
(本题满分15分)
已知为上的奇函数,当时,为二次函数,且满足,不等式组的解集是.
(1)求函数的解析式
(2)作出的图象并根据图象讨论关于的方程:根的个数
(本题满分14分)
已知全集,集合,.
(1)若,求实数的值;
(2)若“”是“”的必要不充分条件,求实数的取值范围.