某商场预计全年分批购入每台价值为2 000元的电视机共3 600台,每批都购入x台(x为正整数),且每批需付运费400元,储存购入的电视机全年所付保管费用与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运费和保管费共43 600元.现全年只有24 000元资金可用于支付这笔费用.请问能否恰当地安排每批进货的数量,使资金够用?写出你的结论并说明理由.
已知0<a<,A=1-a2,B=1+a2,C=,D=.
(1)求证:1-a>a2;
(2)比较A、B、C、D的大小
解关于x的不等式:x+>a+(a>0)
解不等式组
其中x、y都是整数
某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________千米处
已知关于x的不等式<0的解集是(-∞,-1)∪,则a=________