函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则( )
A.f(x)是偶函数 B.f(x)是奇函数
C.f(x)=f(x+2) D.f(x+3)是奇函数
已知函数f(x)=,若f(2-a2)>f(a),则实数a的取值范围是( )
A.(-∞,-1)∪(2,+∞) B.(-1,2)
C.(-2,1) D.(-∞,-2)∪(1,+∞)
设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-2)=0,则不等式f(x)g(x)>0的解集是( )
A.(-2,0)∪(2,+∞)
B.(-2,0)∪(0,2)
C.(-∞,-2)∪(2,+∞)
D.(-∞,-2)∪(0,2)
若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=ex,则有( )
A.f(2)<f(3)<g(0) B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3) D.g(0)<f(2)<f(3)
f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的( )
A.充要条件
B.充分而不必要的条件
C.必要而不充分的条件
D.既不充分也不必要的条件
已知函数f(x)=()x,
函数y=f-1(x)是函数y=f(x)的反函数.
(1)若函数y=f-1(mx2+mx+1)的定义域为R,求实数m的取值范围;
(2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值g(a);
(3)是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由