设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为λ(λ<1),画面的上下各留8 cm的空白,左右各留5 cm的空白,问怎样确定画面的高与宽的尺寸,能使宣传画所用纸张面积最小?如果λ∈,那么λ为何值时,能使宣传画所用纸张面积最小
围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y(单位:元).
(1)将y表示为x的函数;
(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
在约束条件下,当3≤s≤5时,目标函数z=3x+2y的最大值的变化范围是_________
若实数x,y满足s=x+y的最大值为___
若实数x,y满足不等式组
则2x+3y的最小值是_______
建造一个容积为18 m3,深为2 m的长方形无盖水池,如果池底和池壁每m2的造价分别为200元和150元,那么池的最低造价为__________元