若f(x)=x3,f′(x0)=3,则x0的值是 ( )
A.1 B.-1
C.±1 D.3
某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:
资 金 |
|
|
|
|
单位产品所需资金(百元) |
|
|
|
|
空调机 |
洗衣机 |
|
月资金供应量 (百元) |
|
成 本 |
30 |
20 |
300 |
|
劳动力(工资) |
5 |
10 |
110 |
|
单位利润 |
6 |
8 |
|
|
试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?
某校伙食长期以面粉和大米为主食,面食每100 g含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100 g含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?
设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为λ(λ<1),画面的上下各留8 cm的空白,左右各留5 cm的空白,问怎样确定画面的高与宽的尺寸,能使宣传画所用纸张面积最小?如果λ∈,那么λ为何值时,能使宣传画所用纸张面积最小
围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y(单位:元).
(1)将y表示为x的函数;
(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
在约束条件下,当3≤s≤5时,目标函数z=3x+2y的最大值的变化范围是_________