名工人某天生产同一零件,生产的件数是设其平均数为,中位数为,众数为,则有( )
A B C D
已知函数f(x)=-x3-ax2+b2x+1(a、b∈R).
(1)若a=1,b=1,求f(x)的极值和单调区间;
(2)已知x1,x2为f(x)的极值点,且|f(x1)-f(x2)|=|x1-x2|,若当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒小于m,求m的取值范围
设a为实常数,函数f(x)=-x3+ax2-4.
(1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为,求函数f(x)的单调区间;
(2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
已知函数f(x)=x3-x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.
(1)若存在x<0,使得f′(x)=-9,求a的最大值;
(2)当a>0时,求函数f(x)的极值.
已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,又f′=.
(1)求f(x)的解析式;
(2)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围