甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是( )
A.p1p2 |
B.p1(1-p2)+p2(1-p1) |
C.1-p1p2 |
D.1-(1-p1)(1-p2) |
一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A表示第一次摸得白球,B表示第二次摸得白球,则A与B是( )
A.互斥事件 |
B.不相互独立事件 |
C.对立事件 |
D.相互独立事件 |
在数列中,a1=2,an+1=4an-3n+1,n∈N*.
(1)证明数列是等比数列;
(2)求数列的前n项和Sn;
(3)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立
用反证法证明:如果a>b>0,那么>.
将正△ABC分割成n2(n≥2,n∈N)个全等的小正三角形(图乙,图丙分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于△ABC的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别成等差数列,若顶点A,B,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,求f(3)和f(n).
由下列各式:1>,1++>1,1++++++>,1+++……+>2,你能得出怎样的结论,并进行证明