若x2+xy+y2=1且x、y∈R,则n=x2+y2的取值范围是( )
A.0<n≤1 |
B.2≤n≤3 |
C.n≥2 |
D.≤n≤2 |
设m>0,则直线(x+y)+1+m=0与圆x2+y2=m的位置关系为( )
A.相切 |
B.相交 |
C.相切或相离 |
D.相交或相切 |
直线l与圆x2+y2+2x-4y+a=0(a<3)相交于A、B两点,若弦AB的中点为C(-2,3),则直线l的方程为( )
A.x-y+5=0 B.x+y-1=0
C.x-y-5=0 D.x+y-3=0
如图,M、N、P分别是正方体ABCD-A1B1C1D1的棱AB、BC、DD1上的点.
(1)若=,求证:无论点P在D1D上如何移动,总有BP⊥MN;
(2)若D1P:PD=1∶2,且PB⊥平面B1MN,求二面角M-B1N-B的余弦值;
(3)棱DD1上是否总存在这样的点P,使得平面APC1⊥平面ACC1?证明你的结论.
已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点.
(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离;
如图所示,四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.
(1)建立适当的坐标系,并写出点B,P的坐标;
(2)求异面直线PA与BC所成角的余弦值;
(3)若PB的中点为M,求证:平面AMC⊥平面PBC.