a、b是两条异面直线,A是不在a、b上的点,则下列结论成立的是( )
A.过A有且只有一个平面平行于a、b
B.过A至少有一个平面平行于a、b
C.过A有无数个平面平行于a、b
D.过A且平行a、b的平面可能不存在
已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为( )
A.16 B.24或
C.14 D.20
给出下列命题:
①若平面α内的直线l垂直于平面β内的任意直线,则α⊥β;
②若平面α内的任一直线都平行于平面β,则α∥β;
③若平面α垂直于平面β,直线l在平面α内,则l⊥β;
④若平面α平行于平面β,直线l在平面α内,则l∥β.
其中正确命题的个数是( )
A.4 B.3 C.2 D.1
α、β是两个不重合的平面,a、b是两条不同直线,在下列条件下,可判定α∥β的是( )
A.α、β都平行于直线a、b
B.α内有三个不共线点A、B、C到β的距离相等
C.a、b是α内两条直线,且a∥β,b∥β
D.a、b是两条异面直线且a∥α,b∥α,a∥β,b∥β
如右图所示,一张平行四边形的硬纸片ABC0D中,AD=BD=1,AB=.沿它的对角线BD把△BDC0折起,使点C0到达平面ABC0D外点C的位置.
(1)证明:平面ABC0D⊥平面CBC0;
(2)如果△ABC为等腰三角形,求二面角A-BD-C的大小
如右图所示,等腰三角形△ABC的底边AB=6,高CD=3,
点E是线段BD上异于B、D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AE,记BE=x,V(x)表示四棱锥P-ACEF的体积.
(1)求V(x)的表达式;
(2)当x为何值时,V(x)取得最大值?
(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值