如右图,A、B、C、D为空间四点.在△ABC中,AB=2,AC=BC=.等边三角形ADB以AB为轴运动.
(1)当平面ADB⊥平面ABC时,求CD;
(2)当△ADB转动时,是否总有AB⊥CD?
证明你的结论.
如右图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=.
(1)求证:PA⊥平面ABCD;
(2)求四棱锥P-ABCD的体积
如右图所示,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)求三棱锥E—PAD的体积;
(2)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(3)证明:无论点E在边BC的何处,都有PE⊥AF.
如右图所示,ABCD-A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点.
(1)求证:BD1∥平面C1DE;
(2)求三棱锥D-D1BC的体积.
如下图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,K为垂足.设AK=t,则t的取值范围是_____________.
设三棱锥P-ABC的顶点P在平面ABC上的射影是H,给出以下命题:
①若PA⊥BC,PB⊥AC,则H是△ABC的垂心
②若PA、PB、PC两两互相垂直,则H是△ABC的垂心
③若∠ABC=90°,H是AC的中点,则PA=PB=PC
④若PA=PB=PC,则H是△ABC的外心
其中正确命题的命题是________