在上海世界博览会开展期间,计划选派部分高二学生参加宣传活动,报名参加的学生需进行测试,共设4道选择题,规定必须答完所有题,且答对一题得1分,答错一题扣1分,至少得2分才能入选成为宣传员;甲乙丙三名同学报名参加测试,他们答对每个题的概率都为,且每个人答题相互不受影响.
(1)求学生甲能通过测试成为宣传员的概率;
(2)求至少有两名学生成为宣传员的概率.
如图,在四棱锥中,底面为菱形,, , ,为的中点,为的中点
(1)证明:直线;
(2)求异面直线与所成角的大小;
(3)求点到平面的距离.
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球.甲先取,乙后取,然后甲再取…取后不放回,每人最多取两次,若两人中有一人首先取到白球时则终止,每个球在每一次被取出的机会是等可能的.
(1)求袋中原有白球的个数;
(2)求甲取到白球的概率;
(3)求取球4次终止的概率.
(本题满分12分)已知展开式的二项式系数和为512,
且
(1)求的值;
(2)求的值;
(3)求被6整除的余数.
(本题满分10分)某同学练习投篮,已知他每次投篮命中率为,
(1)求在他第三次投篮后,首次把篮球投入篮框内的概率;
(2)若想使他投入篮球的概率达到0.99,则他至少需投多少次?(lg2=0.3)
三棱锥中,,,,,若四点在同一个球面上,则在球面上两点之间的球面距离是_____ .