计算:
_____________.
不等式
的解集为_____________.
(本题满分18分,其中第1小题4分,第2小题6分,第,3小题8分)
一青蛙从点
开始依次水平向右和竖直向上跳动,其落点坐标依次是
,(如图所示,
坐标以已知条件为准),
表示青蛙从点
到点
所经过的路程。
(1) 若点
为抛物线![]()
准线上
一点,点
,
均在该抛物线上,并且直线![]()
经
过该抛物线的焦点,证明
.
(2)若点
要么落在
所表示的曲线上,
要么落在
所表示的曲线上,并且
,
试写出
(不需证明);
(3)若点
要么落在
所表示的曲线上,要么落在
所表示的曲线上,并且
,求
的表达式.

.(本题满分16分,其中第1小题4分,第2小题6分,第3小题6分,)
如图,已知椭圆
,
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(1)求椭圆和双曲线的标准方程;
(2)设直线
、
的斜率分别为
、
,证明
;
(3)是否存在常数
,使得![]()
恒成立?若存在,求
的值;若不存在,请说明理由.

(本题满分14分,其中第1小题6分,第2小题8分)
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用
(单位:万元)与隔热层厚度
(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求
的值及
的表达式;
(2)隔热层修建多厚时,总费用
达到最小,并求最小值.
(本题满分14分,其中第1小题6分,第2小题8分)
在
中,
分别为角
的对边,且满足
.
(1)求角
大小;(2)若
,求
的面积的最大值.
