已知扇形的面积为
,半径为1,则该扇形的圆心角的弧度数是 .
若
,
,
,则
.
(理)对数列
和
,若对任意正整数
,恒有
,则称数列
是数列
的“下界数列”.
(1)设数列
,请写出一个公比不为1的等比数列
,使数列
是数列
的“下界数列”;
(2)设数列
,求证数列
是数列
的“下界数列”;
(3)设数列
,构造
,
,求使
对
恒成立的
的最小值.
(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
(文)已知数列
中,![]()
(1)求证数列
不是等比数列,并求该数列的通项公式;
(2)求数列
的前
项和
;
(3)设数列
的前
项和为
,若
对任意
恒成立,求
的最小值.
本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设函数
是定义域为R的奇函数.
(1)求k值;
(2)(文)当
时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,试判断函数单调性并求使不等式
恒成立的
的取值范围;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知
为锐角,且
.
(1)设
,若
,求
的值;
(2)在
中,若
,
,
,求
的面积.
