(12分)某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为
ξ |
0 |
1 |
2 |
3 |
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求,的值;
(Ⅲ)求数学期望ξ。
(12分)在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点。
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的余弦值;
(12分)ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,,求边BC上的高.
(10分)已知是公差不为零的等差数列,成等比数列.
(Ⅰ)求数列的通项; (Ⅱ)求数列的前n项和
如图放置的边长为1的正方形PABC沿x轴滚动。设顶点P(x,y)的轨迹方程是,则的最小正周期为 ;在其两个相邻零点间的图像与x轴所围区域的面积为 。
如图所示,程序框图(算法流程图)的输出结果是