已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,,不等式 恒成立,求实数的取值范围
甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
频数 |
2 |
3 |
10 |
15 |
分组 |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
15 |
x |
3 |
1 |
甲校:
分组 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
频数 |
1 |
2 |
9 |
8 |
分组 |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
频数 |
10 |
10 |
y |
3 |
乙校:
(Ⅰ)计算x,y的值。
|
甲校 |
乙校 |
总计 |
优秀 |
|
|
|
非优秀 |
|
|
|
总计 |
|
|
|
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异。
P(k2>k0) |
0.10 |
0.025 |
0.010 |
K |
2.706 |
5.024 |
6.635 |
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.
已知数列的前项和为, 且是与2的等差中项,数列中,,点在直线上。
(Ⅰ) 求数列的通项公式和;
(Ⅱ) 设,求数列的前n项和。
正三棱锥P-ABC高为2,侧棱与底面所成角为45°,则点 A到侧面PBC的距离是
阅读右面的程序框图,则输出的=