已知椭圆()过点(0,2),离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点(2,0)的直线与椭圆相交于两点,且为锐角(其中为坐标原点),求直线倾斜角的取值范围.
已知
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若在处有极值,求的单调递增区间;
(Ⅲ)是否存在实数,使在区间的最小值是3,若存在,求出的值;
若不存在,说明理由.
如图,矩形与梯形所在的平面互相垂直,,∥,,,为的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面平面;
(Ⅲ)若,求平面与平面所成锐二面角的余弦值.
甲、乙两名篮球运动员在四场比赛中的得分数据以茎叶图记录如下:
甲 |
|
乙 |
|
1 |
8 |
6 0 0 |
2 |
4 4 |
2 |
3 |
0 |
(Ⅰ)求乙球员得分的平均数和方差;
(Ⅱ)分别从两人得分中随机选取一场的得分,求得分和Y的分布列和数学期望.
(注:方差
其中为,,的平均数)
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求在区间上的最大值和最小值.
已知函数,当且时, 函数的零点,则 .