(本小题满分12分)设, .
(1)当时,求曲线在处的切线方程;
(2)如果存在,,使得成立,求满足上述条件的最大整数;
(3)当时,证明对于任意的,都有成立.
(本小题满分12分)
已知椭圆过点,左、右焦点分别为,离心率为,经过的直线与圆心在轴上且经过点的圆恰好相切于点.
(1)求椭圆及圆的方程;
(2) 在直线上是否存在一点,使为以为底边的等腰三角形?若存在,求点的坐标,否则说明理由.
(本小题满分12分)在数列中,,为常数,,且,,成公比不为1的等比数列.
(1)求的值;
(2)设数列的前项和为,试比较与的大小,并说明理由.
(本小题满分12分)已知矩形ABCD的边长,一块三角板PBD的边,且,如图.
(1)要使三角板PBD能与平面ABCD垂直放置,求的长;
(2)求四棱锥的体积
(本小题满分12分)已知函数.
(1)若把图象上各点的横坐标伸长到原来的2倍,纵坐标不变,再把所得图象向右平移,得到函数的图象,写出的函数解析式;
(2)若且与共线,求的值.
某人站在60米高的楼顶A处测量不可到达的电视塔高,测得塔顶C的仰角为300,塔底B的俯角为150,已知楼底部D和电视塔的底部B在同一水平面上,则电视塔的高
为 米.