已知数列的前n项和为,,且(),数列满足,,对任意,都有.
(Ⅰ)求数列、的通项公式;
(Ⅱ)令,若对任意的,不等式恒成立,试求实数λ的取值范围.
如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2,F为CD中点.
(Ⅰ)求证:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小;
(Ⅲ)求点A到平面CDE的距离.
甲袋中装有大小相同的红球1个,白球2个;乙袋中装有与甲袋中相同大小的红球2个,白球3个.先从甲袋中取出1个球投入乙袋中,然后从乙袋中取出2个小球.
(Ⅰ)求从乙袋中取出的2个小球中仅有1个红球的概率;
(Ⅱ)记从乙袋中取出的2个小球中白球个数为随机变量,求的分布列和数学期望.
△ABC中,角A、B、C对边分别是a、b、c,满足.
(Ⅰ)求角A的大小;
(Ⅱ)求的最大值,并求取得最大值时角B、C的大小.
已知函数,函数(,且mp<0),给出下列结论:
①存在实数r和s,使得对于任意实数x恒成立;
②函数的图像关于点对称;
③函数可能不存在零点(注:使关于x的方程的实数x叫做函数的零点);
④关于x的方程的解集可能为{-1,1,4,5}.
其中正确结论的序号为 (写出所有正确结论的序号).
如图,已知F1、F2是椭圆()的左、右焦点,点P在椭圆C上,线段PF2与圆相切于点Q,且点Q为线段PF2的中点,则椭圆C的离心率为________.