已知各项均为正数的数列满足,且.
(Ⅰ)求的值;
(Ⅱ)求证:是等差数列;
(Ⅲ)若,求数列的前项和.
如图,垂直于矩形所在的平面,分别是、的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面平面;
(Ⅲ)求二面角的大小.
在两个袋内,分别装有编号为四个数字的张卡片,现从每个袋内任取一张卡片.
(Ⅰ)利用卡片上的编号写出所有可能抽取的结果;
(Ⅱ)求取出的卡片上的编号之和不大于的概率;
(Ⅲ)若第一个袋内取出的卡片上的编号记为,第二个袋内取出的卡片上的编号记为,求的概率.
已知函数在轴右侧的第一个最高点的横坐标为.
(Ⅰ)求的值;
(Ⅱ)若将函数的图象向右平移个单位后,再将得到的图象上各点横坐标伸长到原来的倍,纵坐标不变,得到函数的图象,求函数的最大值及单调递减区间.
知内接于以为圆心,为半径的圆,且,则的值为 .
若正实数满足,则的最小值是 .