(本小题满分12分)
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,
点(1,)在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切是圆的方程.
(本小题满分12分)
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
分组 |
频数 |
频率 |
[40,50) |
2 |
|
[50,60) |
3 |
|
[60,70) |
10 |
|
[70,80) |
15 |
|
[80,90) |
12 |
|
[90,100] |
8 |
|
合计 |
50 |
|
(Ⅰ)频率分布表 (Ⅰ)频率分布直方图为
.(本小题满分12分)
如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.
(本小题满分12分)
已知公比大于1的等比数列{}满足:++=28,且+2是和的等差中项.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)若=,求{}的前n项和.
在ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=1350,若AC=AB,则BD= .
下列命题:①x∈R,不等式x2+2x > 4x-3均成立;
②若log2x+logx2≥2,则x>1;
③“若a>b>0且c<0,则”的逆否命题;
④若命题p:x∈R,x2+1≥1, 若命题q:x∈R,x2﹣x﹣1≤0,则命题pq是真命题.其中真命题有 .