(本小题满分10分)选修4—5:不等式选讲
已知函数
(1)求不等式的解集;
(2)若关于x的不等式的解集非空,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为:,直线与曲线分别交于.
(1)写出曲线和直线的普通方程;
(2)若成等比数列,求的值.
(本小题满分10分)选修4—1:几何证明选讲
如图,是⊙的直径,是弦,∠BAC的平分线交⊙于,交延长线于点,交于点.
(1)求证:是⊙的切线;
(2)若,求的值.
(本小题满分12分)设是函数的一个极值
点.
(1)求与的关系式(用表示),并求的单调区间;
(2)设,.若存在使得成立,
求的取值范围.
(本小题满分12分)已知是二次函数,不等式的解集是且在区间上的最大值是12.
(1)求的解析式;
(2)是否存在整数使得方程在区间内有且只有两个不等的实
数根?若存在,求出的取值范围;若不存在,说明理由.
(本小题满分12分)某工厂生产一种仪器的元件,由于受生产能力和技术水平的
限制,会产生一些次品,根据经验知道,其次品率与日产量(万件)之间满足关系:
(其中为小于6的正常数)(注:次品率=次品数/生产量,如表示每生产10件产品,有1件为次品,其余为合格品)
已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额(万元)表示为日产量(万件)的函数;
(2)当日产量为多少时,可获得最大利润?