(本小题满分12分)已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)记.当时,函数在区间上有两个零点,求实数的取值范围.
(本小题满分12分)
某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
(本小题满分12分)
给定两个命题::对任意实数都有恒成立;:关于的方程有实数根;如果与中有且仅有一个为真命题,求实数的取值范围.
(本小题满分12分)
设二次函数在区间上的最大值、最小值分别是M、m,集合.
(1)若,且,求M和m的值;
(2)若,且,记,求的最小值.
若函数满足:“对于区间(1,2)上的任意实数,
恒成立”,则称为完美函数.给出以下四个函数
① ② ③ ④
其中是完美函数的序号是 .
函数的图象恒过定点,若点在直线
上,其中,则的最小值为_______.