城市的空气质量以其空气质量指数API(为整数)衡量,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.根据空气质量指数API的不同,可将空气质量分级如下表:
API |
0~50 |
51~100 |
101~150 |
151~200 |
201~250 |
251~300 |
>300 |
状况 |
优 |
良 |
轻微污染 |
轻度污染 |
中度污染 |
中度重污染 |
重度污染 |
为了了解某城市2011年的空气质量情况,现从该城市一年空气质量指数API的监测数据库中,用简单随机抽样方法抽取30个空气质量指数API进行分析,得到如下数据:
API分组 |
|||||||
频数 |
2 |
1 |
4 |
6 |
10 |
5 |
2 |
(Ⅰ)完成下面频率分布直方图,并求质量指数API的中位数大小;
(Ⅱ)估计该城市一年中空气质量为优良的概率;
(Ⅲ)请你依据所给数据和上述分级标准,对该城市的空气质量给出一个简短评价.
如图,四棱锥的底面为矩形,是四棱锥的高,
与所成角为, 是的中点,是上的动点.
(Ⅰ)证明:;
(Ⅱ)若,求直线与平面所成角的大小.
在中,分别为内角所对的边,且满足.
(Ⅰ)求的大小;
(Ⅱ)现给出三个条件:①; ②;③.
试从中选出两个可以确定的条件,写出你的选择并以此为依据求的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分)
下表是某数学老师及他的爷爷、父亲和儿子的身高数据:
父亲身高(cm) |
173 |
170 |
176 |
儿子身高(cm) |
170 |
176 |
182 |
因为儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为 .
参考公式: 回归直线的方程是:,
其中 ;其中是与对应的回归估计值.
参考数据: ,.
设抛物线的焦点为,过点的直线与抛物线相交于两点,若,则直线的斜率
每位学生可从本年级开设的类选修课门,类选修课门中选门,若要求两类课程中各至少选一门,则不同的选法共有 种.(用数字作答)