选修4—4;坐标系与参数方程.
已知直线为参数), 曲线 (为参数).
(Ⅰ)设与相交于两点,求;
(Ⅱ)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.
选修4—1:几何证明选讲
如图,是圆的内接四边形,,过点的圆的切线与的延长线交于点,证明:
(Ⅰ);
(Ⅱ).
已知函数,其中.
(Ⅰ) 求函数的极小值点;
(Ⅱ)若曲线在点处的切线都与轴垂直,问是否存在常数,使函数在区间上存在零点?如果存在,求的值:如果不存在,请说明理由.
平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上 两点,所成的曲线可以是圆,椭圆或双曲线.
(I)求曲线的方程,并讨论的形状与值的关系.
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,若曲线的斜率为的切线与曲线相交于两点,且(为坐标原点),求曲线的方程.
城市的空气质量以其空气质量指数API(为整数)衡量,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.根据空气质量指数API的不同,可将空气质量分级如下表:
API |
0~50 |
51~100 |
101~150 |
151~200 |
201~250 |
251~300 |
>300 |
状况 |
优 |
良 |
轻微污染 |
轻度污染 |
中度污染 |
中度重污染 |
重度污染 |
为了了解某城市2011年的空气质量情况,现从该城市一年空气质量指数API的监测数据库中,用简单随机抽样方法抽取30个空气质量指数API进行分析,得到如下数据:
API分组 |
|||||||
频数 |
2 |
1 |
4 |
6 |
10 |
5 |
2 |
(Ⅰ)完成下面频率分布直方图,并求质量指数API的中位数大小;
(Ⅱ)估计该城市一年中空气质量为优良的概率;
(Ⅲ)请你依据所给数据和上述分级标准,对该城市的空气质量给出一个简短评价.
如图,四棱锥的底面为矩形,是四棱锥的高,
与所成角为, 是的中点,是上的动点.
(Ⅰ)证明:;
(Ⅱ)若,求直线与平面所成角的大小.