已知,则有( )
A. B. C.夹角为 D. 夹角为
等差数列{}中,前10项和=120,那么的值是( )
A.12 B.16 C.24 D.48
已知点在第三象限, 则角的终边在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
已知集合,则等于( )
A. B. C. D.
如图,斜率为1的直线过抛物线的焦点F,与抛物线交于两点A,B。
(1)若|AB|=8,求抛物线的方程;
(2)设P是抛物线上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)。
某公司为了实现2011年1000万元的利润的目标,准备制定一个激励销售人员的奖励方案:销售利润达到10万元时,按销售利润进行奖励,且奖金数额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过利润的25%,现有二个奖励模型:,问其中是否有模型能完全符合公司的要求?说明理由。(解题提示:公司要求的模型只需满足:当时,①函数为增函数;②函数的最大值不超过5;③,参考数据:)