已知数列的前项和和通项满足数列中,
(1)求数列,的通项公式;
(2)数列满足是否存在正整数,使得时恒成立?若存在,求的最小值;若不存在,试说明理由.
如图,为圆的直径,点、在圆上,,矩形所在的平面和圆所在的平面互相垂直,且,.
(1)设的中点为,求证:平面;
(2)设平面将几何体分成的两个锥体的体积分别为,,求.
已知等差数列的前项和为,
(1)求数列的通项公式与前项和;
(2)设求证:数列中任意不同的三项都不可能成为等比数列.
在三角形ABC中,已知内角A、B、C所对的边分别为a、b、c,已知 且
(1)求角B的大小及的取值范围;
(2)若=求的面积.
已知函数
(1)若曲线在点处的切线的倾斜角为,求实数的值;
(2)若函数在区间上单调递增,求实数实数的范围.
给出以下四个命题:
①函数的导函数,令,,则②若,则函数y=f(x)是以4为周期的周期函数;
③在数列{an}中,a1=1,Sn是其前n项和,且满足Sn+1=Sn+2,则数列{an}是等比数列;
④函数y=3x+3-x (x<0)的最小值为2.
则正确命题的序号是 ________