下列有关命题的说法正确的是
A.命题“若”的否命题为:“若”
B.“x=-1”是“”的必要不充分条件
C.命题“”的否定是:“”
D.命题“若”的逆否命题为真命题
若集合则集合B不可能是
A. B.
C. D.
已知椭圆:的左焦点,若椭圆上存在一点,满足以椭圆短轴为直径的圆与线段相切于线段的中点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知两点及椭圆:,过点作斜率为的直线交椭圆于两点,设线段的中点为,连结,试问当为何值时,直线过椭圆的顶点?
(Ⅲ) 过坐标原点的直线交椭圆:于、两点,其中在第一象限,过作轴的垂线,垂足为,连结并延长交椭圆于,求证:
已知函数.
(Ⅰ)记,求的极小值;
(Ⅱ)若函数的图象上存在互相垂直的两条切线,求实数的值及相应的切点坐标.
已知等差数列(N+)中,,,.
(Ⅰ)求数列的通项公式;
(Ⅱ)若将数列的项重新组合,得到新数列,具体方法如下: ,,,,…,依此类推,
第项由相应的中项的和组成,求数列的前项和
一个盒子装有六张卡片,上面分别写着如下六个函数:,,
,,,.
(Ⅰ)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数。在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;
(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.