已知数列(常数p>0),对任意的正整数n, 并有
(I)试判断数列是否是等差数列,若是,求其通项公式,若不是,说明理由;
(II)令的前n项和,求证:
如图4,已知平面是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线的中点,已知
(I))求证:⊥平面;
(II)求二面角的余弦值.
(Ⅲ)求三棱锥的体积.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为,(>),且不同种产品是否受欢迎相互独立。记为公司向市场投放三种新型产品受欢迎的数量,其分布列为
0 |
1 |
2 |
3 |
|
(I)求该公司至少有一种产品受欢迎的概率;
(II)求,的值;
(III)求数学期望.
设函数的图象经过点.
(I)求的解析式,并求函数的最小正周期和最值;
(II)若,其中是面积为的锐角的内角,且,求边和的长.
给出下列六个命题:
①函数f(x)=lnx-2+x在区间(1 , e)上存在零点;
②若,则函数y=f(x)在x=x0处取得极值;
③若m≥-1,则函数的值域为R;
④“a=1”是“函数在定义域上是奇函数”的充分不必要条件。
⑤函数y=(1+x)的图像与函数y=f(l-x)的图像关于y轴对称;
⑥满足条件AC=,AB =1的三角形△ABC有两个.
其中正确命题的个数是 。
在一次演讲比赛中,10位评委对一名选手打分的茎叶图如下所示,若去掉一个最高分和一个最低分,得到一组数据,在如图所示的程序框图中,是这8个数据中的平均数,则输出的的值为_ ____