(本小题满分12分)
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(1)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(2)若第一次随机抽1张卡片,放回后再随机抽取1张卡片,求两次抽取中至少一次抽到数字2的概率.
(本小题满分12分)
已知函数的最小正周期为,且函数的图象过点.
(1)求和的值;
(2)设,求函数的单调递增区间.
(几何证明选讲选做题) 如图3,从圆外一点引圆的切线和割线,已知,圆的半径,则圆心到的距离为 .
(坐标系与参数方程选做题)在极坐标系下,圆的圆心到直线的距离是
记等差数列的前项的和为, 利用倒序求和的方法得:;类似地,记等比数列的前项的积为,且),试类比等差数列求和的方法,可将表示成首项,末项与项数的一个关系式,即=_____________.
已知椭圆的离心率为,则__________.