已知平面向量,则向量( )
A. B. C. D.
设集合,则 ( )
A. B. C. D.
.(本小题满分14分)
已知数列,,其中是方程的两个根.
(1)证明:对任意正整数,都有;
(2)若数列中的项都是正整数,试证明:任意相邻两项的最大公约数均为1;
(3)若,证明:。
.(本小题满分14分)
已知椭圆的左焦点为,离心率e=,M、N是椭圆上的动
点。
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为,问:是否存在定点,
使得为定值?,若存在,求出的坐标,若不存在,说明理由。
(Ⅲ)若在第一象限,且点关于原点对称,点在轴上的射影为,连接 并延长
交椭圆于点,证明:;
.(本小题满分14分)
已知函数 。
(Ⅰ)若点(1,)在函数图象上且函数在该点处的切线斜率为,求的极
大值;
(Ⅱ)若在区间[-1,2]上是单调减函数,求的最小值
(本小题满分14分)
已知四棱锥的底面是边长为4的正方形,,分别为中点。
(1)证明:。
(2)求三棱锥的体积。