设集合,,,则=( )
A. B. C. D.
(本小题满分14分)给定函数
(1)试求函数的单调减区间;
(2)已知各项均为负的数列满足,求证:;
(3)设,为数列的前项和,求证:。
(本小题满分14分)
如图,已知曲线与曲线交于点.直线与曲线分别相交于点.
(Ⅰ)写出四边形的面积与的函数关系;
(Ⅱ)讨论的单调性,并求的最大值.
(本小题满分14分)等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.
|
第一列 |
第二列 |
第三列 |
第一行 |
3 |
2 |
10 |
第二行[来 |
6 |
4 |
14 |
第三行 |
9 |
8 |
18 |
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足 ,记数列的前n项和为,证明
(本小题满分12分)如果直线与轴正半轴,轴正半轴围成的四边形封闭区域(含边界)中的点,使函数的最大值为8,求的最小值
(本大题12分)已知二次函数.
(1)判断命题:“对于任意的R(R为实数集),方程必有实数根”的真假,并写出判断过程
(2),若在区间及内各有一个零点.求实数a的范围