(本题满分14分)已知如图:平行四边形ABCD中,,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.
(1)求证:GH∥平面CDE;
(2)若,求四棱锥F-ABCD的体积.
(本题满分12分)为了了解某年段1000名学生的百米成绩情况,随机抽取了若
干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组
[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如
图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.
(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;
(2)求调查中随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
(本题满分12分)在锐角中,已知内角A、B、C所对的边分别为a、b、
c,且满足2sinB(2cos2-1)=-cos2B。
(1)求B的大小;
(2)如果,求的面积的最大值.
的取值范围是 .
(几何证明选讲选做题)如图所示,AC和AB分别是圆O的切线,B、C 为切点,且OC = 3,AB = 4,延长AO到D点,则△ABD的面积是___________.
某企业三月中旬生产,A、B、C三种产品共3000件,根据分层抽样的结果;企
业统计员制作了如下的统计表格:
由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C的产品数量是 件。