(理)若向量=(1,1,x), =(1,2,1), =(1,1,1),满足条件=―
2,则=( )
A. B.2 C. D.―2
(14分)给出下面的数表序列:
其中表n(n=1,2,3 )有n行,第1行的n个数是1,3,5,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和。
(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);
(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12,记此数列为 求和:
(14分)设各项均为正数的数列的前n项和为,已知,数
列是公差为的等差数列。
(1)求数列的通项公式(用表示);
(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为。
(12分)设,若将
适当排序后可构成公差为1的等差数列的前三项.
(Ⅰ)求的值及的通项公式;
(Ⅱ)记函数的图象在轴上截得的线段长为,设 ,求
(12分)证明以下命题:
(Ⅰ)对任一正整a,都存在整数b,c(b<c),使得成等差数列。
(Ⅱ)存在无穷多个互不相似的三角形△,其边长为正整数且成等差数列。
(12分)在数列中,=0,且对任意k,成等差数列,
其公差为2k。
(Ⅰ)证明成等比数列;
(Ⅱ)求数列的通项公式;