.(本小题满分16分)
已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(1)求椭圆的方程;
(2)设,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点;
(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值
范围.
.(本小题满分14分)
某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收
益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单
位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.现
有两个奖励方案的函数模型:(1);(2).试问这两个函数模
型是否符合该公司要求,并说明理由.
.(本小题满分14分)
已知矩形所在平面,,为线段上一点,为线段
的中点.(1)当E为PD的中点时,求证:;
(2)当时,求证:BG//平面AEC.
(本小题满分14分)
已知向量与互相垂直,其中.
(1)求和的值;
(2)若,求的值.
已知等比数列满足,,且对任意正整数,仍是该数列中的某一项,则公比的取值集合为 ▲ .
已知, :与:
交于不同两点,且,则实数的值为▲