已知集合A={1,2,3},B={0,2,3},则A∩B= ▲
设数列的前n项和为,
(1)求证:数列是等比数列;
(2)若,是否存在q的某些取值,使数列中某一项能表示为另外三项之和?若能求出q的全部取值集合,若不能说明理由。
(3)若,是否存在,使数列中,某一项可以表示为另外三项之和?若存在指出q的一个取值,若不存在,说明理由。
(本小题共16分)已知.
(1)若函数在区间上有极值,求实数的取值范围;
(2)若关于的方程有实数解,求实数的取值范围;
(3)当,时,求证:.
(本小题共16分)已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点 在直线上.
(1)求椭圆的标准方程
(2)求以OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N.求证:线段ON的长为定值,并求出这个定值.
(本小题满分14分)某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元。
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)
(本小题共14分)四棱锥P-ABCD中,底面ABCD为菱形,且,侧面PAD是正三角形,其所在的平面垂直于底面ABCD,点G为AD的中点.
(1)求证:BG面PAD;
(2)E是BC的中点,在PC上求一点F,使得PG面DEF.