选修4-2:矩阵与变换(本小题满分10分)
在极坐标系中,A为曲线上的动点,B为直线上的动点,求AB的最小值。
选修4-2:矩阵与变换(本小题满分10分)
若点A(2,2)在矩阵对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵
选修4-1:几何证明选讲(本小题满分10分)如图,是直角,圆O与AP相切于点T,与AQ相交于两点B,C。求证:BT平分
(本小题满分16分)设数列的前n项和为,已知为常数,),eg
(1)求p,q的值;
(2)求数列的通项公式;
(3)是否存在正整数m,n,使成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由。
(本小题满分16分)已知函数,其中e是自然数的底数,。
(1)当时,解不等式;
(2)若在[-1,1]上是单调增函数,求的取值范围;
(3)当时,求整数k的所有值,使方程在[k,k+1]上有解。
(本小题满分16分)平面直角坐标系xoy中,直线截以原点O为圆心的圆所得的弦长为
(1)求圆O的方程;
(2)若直线与圆O切于第一象限,且与坐标轴交于D,E,当DE长最小时,求直线的方程;
(3)设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由。