.选修4—4:坐标系与参数方程
椭圆中心在原点,焦点在轴上。离心率为,点是椭圆上的一个动点,
若的最大值为,求椭圆的标准方程.
选修4—2:矩阵与变换
已知二阶矩阵对应的变换将点变换成点,求实数的值
【选做题】本题包括A,B,C,D四小题,请选定其中两题作答,每小题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.
A.选修4—1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,
过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,
∠BPC=40°,求∠MPB的大小.
(本小题满分16分)
已知函数.
(Ⅰ)当时,求证:函数在上单调递增;
(Ⅱ)若函数有三个零点,求的值;
(Ⅲ)若存在,使得,试求的取值范围.
已知椭圆C:+=1(a>b>0)的离心率为,且经过点P(1,)。
(1)求椭圆C的方程;
(2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M。问点M满足什么条件时,圆M与y轴有两个交点?
(3)设圆M与y轴交于D、E两点,求点D、E距离的最大值。
(本小题满分16分)如图,在平面直角坐标系中,已知,,,直线与线段、分别交于点、.
(Ⅰ)当时,求以为焦点,且过中点的椭圆的标准方程;
(Ⅱ)过点作直线∥交于点,记的外接圆为圆.
① 求证:圆心在定直线上;
② 圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.