若纯虚数z满足( )
A.-2 B.2 C.-8 D.8
已知(m为常数,m>0且m≠1).
设(n∈)是首项为m2,公比为m的等比数列.
(1)求证:数列是等差数列;
(2)若,且数列的前n项和为Sn,当m=2时,求Sn;
(3)若,问是否存在m,使得数列中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.
已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线的距离为3。
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点M,N,当|AM|=|AN|时,求m的取值范围.
已知函数
(1)若的图象在点处的切线方程为,求在区间上的最大值;
(2)当时,若在区间上不单调,求的取值范围.
如图,在三棱锥中,平面,,为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.
(1)证明:平面;
(2)求三棱锥的体积;
(3)在的平分线上确定一点,使得平面,并求此时的长.
某班级共有60名学生,先用抽签法从中抽取部分学生调查他们的学习情况,若每位学生被抽到的概率为.
(1)求从中抽取的学生数;
(2)若抽查结果如下,先确定x,再完成频率分布直方图;
每周学习时间(小时) |
[0,10) |
[10,20) |
[20,30) |
[30,40 |
人数 |
2 |
4 |
x |
1 |
(3)估计该班学生每周学习时间的平均数(同一组中的数据用该组区间的中点值作代表).