(本小题满分12分)如图所示,已知中,AB=2OB=4,D为AB的中点,若是绕直线AO旋转而成的,记二面角B—AO—C的大小为(I)若,求证:平面平面AOB;(II)若时,求二面角C—OD—B的余弦值的最小值。
(本小题满分12分)2010年广东亚运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:
甲系列:
动作 |
K |
D |
||
得分 |
100 |
80 |
40 |
10 |
概率 |
乙系列:
动作 |
K |
D |
||
得分 |
90 |
50 |
20 |
0 |
概率 |
现该运动员最后一个出场,其之前运动员的最高得分为118分。
(I) 若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;
(II) (II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX。
(本小题满分12分)已知函数(I)求函数上的最小值;(II)求证:对一切,都有
(本小题满分12分)已知函数 (I)求函数的最小正周期和值域;(II)记的内角A、B、C的对边分别是a,b,c,若求角C的值
对于函数与函数有下列命题:
①函数的图像关于对称;②函数有且只有一个零点;
③函数和函数图像上存在平行的切线;
④若函数在点P处的切线平行于函数在点Q处的切线,则直线PQ的斜率为其中正确的命题是 。(将所有正确命题的序号都填上)
执行右边的程序框图(算法流程图),输出的S的值是