选修4-4:坐标系与参数方程
已知曲线(为参数).
(1)将的方程化为普通方程;
(2)若点是曲线上的动点,求的取值范围.
选修4-1:几何证明选讲
如图,是⊙的直径,是⊙的切线,与的延长线交于点,为切点.若,,的平分线与和⊙分别交于点、,求的值.
(本题满分12分) 设函数(),.
(1) 将函数图象向右平移一个单位即可得到函数的图象,试写出的解析式及值域;
(2) 关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3) 对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本题满分12分)如图,曲线是以原点O为中心、为焦点的椭圆的一部分,曲线是以O为顶点、为焦点的抛物线的一部分,A是曲线和的交点且为钝角,若
,.
(1)求曲线和的方程;
(2)过作一条与轴不垂直的直线,分别与曲线依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问是否为定值?若是求出定值;若不是说明理由.
(本题满分12分)如图所示,某市政府决定在以政府大楼为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径 ,,与之间的夹角为.
(1)将图书馆底面矩形的面积表示成的函数.
(2)若,求当为何值时,矩形的面积有最大值?
其最大值是多少?
.(本题满分12分)如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(1)求证:AB1// 面BDC1;
(2)求二面角C1—BD—C的余弦值;
(3)在侧棱AA1上是否存在点P,使得
CP⊥面BDC1?并证明你的结论.