选修4-5:不等式选讲
已知不等式![]()
(1) 若
,求不等式的解集;
(2) 若已知不等式的解集不是空集,求a的取值范围。
选修4-4:坐标系与参数方程
已知曲线
(
为参数).
(1)将
的方程化为普通方程;
(2)若点
是曲线
上的动点,求
的取值范围.
选修4-1:几何证明选讲
如图,
是⊙
的直径,
是⊙
的切线,
与
的延长线交于点
,
为切点.若
,
,
的平分线
与
和⊙
分别交于点
、
,求
的值.

(本题满分12分) 设函数
(
),
.
(1) 将函数
图象向右平移一个单位即可得到函数
的图象,试写出
的解析式及值域;
(2) 关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3) 对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本题满分12分)如图,曲线
是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点且
为钝角,若
,
.
(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.

(本题满分12分)如图所示,某市政府决定在以政府大楼
为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径
,
,
与
之间的夹角为
.
(1)将图书馆底面矩形
的面积
表示成
的函数.
(2)若
,求当
为何值时,矩形
的面积
有最大值?
其最大值是多少?

