设集合U={0,1,2,3},M={0,1,2}, N={1,2,3} 则CU(M∩N)=
A.{0,1} B.{1,2} C.{1,3} D.{0,3}
(本小题满分12分)已知函数![]()
(I)若函数
在区间
上存在极值,求实数a的取值范围;
(II)当
时,不等式
恒成立,求实数k的取值范围.
(Ⅲ)求证:【解析】
(1)
,其定义域为
,则
令
,
则
,
当
时,
;当
时,![]()
在(0,1)上单调递增,在
上单调递减,
即当
时,函数
取得极大值. (3分)
函数
在区间
上存在极值,
,解得
(4分)
(2)不等式
,即![]()
令
(6分)
令
,则
,
,即
在
上单调递增, (7分)
,从而
,故
在
上单调递增, (7分)
(8分)
(3)由(2)知,当
时,
恒成立,即
,
令
,则
, (9分)
![]()
(10分)
以上各式相加得,

即
,
即
(12分)
。
(本小题满分12分)已知函数
,若存在
恒成立,则称
的一个“下界函数”.
(I)如果函数
的一个“下界函数”,求实数t的取值范围(II)设函数
,试问函数F(x)是否存在零点?若存在,求出零点个数;若不存在,请说明理由.
(本小题满分12分)已知数列
的前n项和为
等差数列
,又
成等比数列.
(I)求数列
、
的通项公式;
(II)求数列
的前n项和
.
(本小题满分12分)从2003年开始,我国就通过实施高校自主招生探索人才选拔制度改革,允许部分高校拿出一定比例的招生名额,选拔那些有特殊才能的学生。某学生参加一个高校的自主招生考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为
、
,两题全部答对方可进入面试。面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为
,至少答对一题即可被录取。(假设每个环节的每个问题回答正确与否是相对独立的)
(I)求该学生被学校录取的概率;
(II)设该学生答对题目的个数为ξ,求ξ的分布列和数学期望。
(本小题满分12分)在△ABC中,内角A、B、C的对边分别为a,b,c,
,∠BAC=
,a=4.
(I)求bc的最大值及
的取值范围;
(II)求函数
的最值
