已知复数z满足(+3i)z=3i,则z为
A.- B.- C.+ D.+
设集合U={0,1,2,3},M={0,1,2}, N={1,2,3} 则CU(M∩N)=
A.{0,1} B.{1,2} C.{1,3} D.{0,3}
(本小题满分12分)已知函数
(I)若函数在区间上存在极值,求实数a的取值范围;
(II)当时,不等式恒成立,求实数k的取值范围.
(Ⅲ)求证:【解析】
(1),其定义域为,则令,
则,
当时,;当时,
在(0,1)上单调递增,在上单调递减,
即当时,函数取得极大值. (3分)
函数在区间上存在极值,
,解得 (4分)
(2)不等式,即
令
(6分)
令,则,
,即在上单调递增, (7分)
,从而,故在上单调递增, (7分)
(8分)
(3)由(2)知,当时,恒成立,即,
令,则, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
(本小题满分12分)已知函数,若存在恒成立,则称的一个“下界函数”.
(I)如果函数的一个“下界函数”,求实数t的取值范围(II)设函数,试问函数F(x)是否存在零点?若存在,求出零点个数;若不存在,请说明理由.
(本小题满分12分)已知数列的前n项和为等差数列,又成等比数列.
(I)求数列、的通项公式;
(II)求数列的前n项和.
(本小题满分12分)从2003年开始,我国就通过实施高校自主招生探索人才选拔制度改革,允许部分高校拿出一定比例的招生名额,选拔那些有特殊才能的学生。某学生参加一个高校的自主招生考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为、,两题全部答对方可进入面试。面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一题即可被录取。(假设每个环节的每个问题回答正确与否是相对独立的)
(I)求该学生被学校录取的概率;
(II)设该学生答对题目的个数为ξ,求ξ的分布列和数学期望。