已知集合,则= ( )
A. B. C. D.
(本题满分14分) 设函数f (x)=ln x+在 (0,) 内有极值.
(Ⅰ) 求实数a的取值范围;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求证:f (x2)-f (x1)>e+2-.
注:e是自然对数的底数.
(本题满分15分) 如图,椭圆C: x 2+3 y 2=3b2 (b>0).
(Ⅰ) 求椭圆C的离心率;
(Ⅱ) 若b=1,A,B是椭圆C上两点,且 | AB | =,
求△AOB面积的最大值.
(本题满分15分) 四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,
∠BAD=120°,PA=AB,G,F分别是线段CE,PB上的动点,且满足==λ∈(0,1).
(Ⅰ) 求证:FG∥平面PDC;
(Ⅱ) 求λ的值,使得二面角F-CD-G的平面角的正切值为.
) (本题满分14分) 设等差数列{an}的首项a1为a,前n项和为Sn.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
(本题满分14分) 在△ABC中,角A,B,C所对的边分别为a,b,c,已知
tan (A+B)=2.(Ⅰ) 求sin C的值;(Ⅱ) 当a=1,c=时,求b的值.