设是非空集合,定义={且},己知
,则等于 ( )
A.(2,+∞) B.[0,1]∪[2,+∞)
C.[0,1)∪(2,+∞) D.[0,1]∪(2,+∞)
(本小题满分15分) 已知抛物线C的顶点在原点, 焦点为F(0,1).
(1) 求抛物线C的方程;
(2)在抛物线C上是否存在点P, 使得过点P
的直线交C于另一点Q,满足PF⊥QF, 且
PQ与C在点P处的切线垂直.若存在,求出
点P的坐标; 若不存在,请说明理由.
(本小题满分15分)已知函数,,其中为实数.
(1)设为常数,求函数在区间上的最小值;
(2)若对一切,不等式恒成立,求实数的取值范围.
(本小题满分14分)正△的边长为4,是边上的高,分别是
和边的中点,现将△沿翻折成直二面角.
(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
(本小题满分14分)已知数列的前项和为,,若数列是公比为的等比数列.
(1)求数列的通项公式;
(2)设,,求数列的前项和.
(本小题满分14分) 设函数.
(1)求函数的最小正周期和单调递增区间;
(2)在△ABC中,角A,B,C所对边分别为a,b,c,且求a的值.