(本题满分14分)
在四棱锥P—ABCD中,底面ABCD是一直角梯,
与底面成30°角.
(1)若为垂足,求证:;
(2)求平面PAB与平面PCD所成的锐二面角的正切值.
(本题满分14分)
已知等差数列的前项和为,且.
(I)求数列的通项公式;
(II)若数列满足,求数列的前项和.
(本题满分14分)
在△ABC中,角A,B,C所对的边为a,b,c,已知sin=.
(Ⅰ) 求cos C的值;
(Ⅱ) 若△ABC的面积为,且sin2 A+sin2B=sin2 C,求c的值.
若函数有三个零点,则的值是 ▲ .
设M1(0,0),M2(1,0),以M1为圆心,| M1 M2 | 为半径作圆交x轴于点M3 (不同于M2),记作⊙M1; 以M2为圆心,| M2 M3 | 为半径作圆交x轴于点M4 (不同于M3),记作⊙M2;……;以Mn为圆心,| Mn Mn+1 | 为半径作圆交x轴于点Mn+2 (不同于Mn+1),记作⊙Mn;……当n∈N*时,过原点作倾斜角为30°的直线与⊙Mn交于An,Bn.考察下列论断:
当n=1时,| A1B1 |=2; 当n=2时,| A2B2 |=;
当n=3时,| A3B3 |=;当n=4时,| A4B4 |=;
……
由以上论断推测一个一般的结论:对于n∈N*,| AnBn |= ▲ .
如右图:一离散型随机变量的概率分布列为:
且其数学期望=1.5,则____▲_____.
0 |
1 |
2 |
3 |
|
P |
0.1 |
0.1 |