已知集合,则是
A. B. C. D.
已知抛物线的顶点在坐标原点O,焦点F在x正半轴上,倾斜角为锐角的直线过F点。设直线与抛物线交于A、B两点,与抛物线的准线交于M点,
(I)若,求直线的斜率;
(II)若点A、B在x轴上的射影分别为A1、B1,且成等差数列,求的值。
已知函数 ,.
(Ⅰ)当 时,求函数 的最小值; (Ⅱ)当 时,讨论函数 的单调性;
(Ⅲ)是否存在实数,对任意的 ,且,有,恒成立,若存在求出的取值范围,若不存在,说明理由。
如图,在四棱锥中,平面平面.底面为矩形, ,.
(Ⅰ)求证:;
(Ⅱ)求二面角的大小.
数列的前项和记为,,点在直线上,.
(Ⅰ)当实数为何值时,数列是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设,,是数列的前项和,求。
如图,在△ABC中,已知B=,AC=4,D为BC边上一点.
(I)若AD=2,S△ABC=2,求DC的长;
(Ⅱ)若AB=AD,试求△ADC的周长的最大值.