如图,在四棱锥中,底面是菱形,,,,平面,是的中点,是的中点.
(Ⅰ) 求证:∥平面;
(Ⅱ)求证:平面⊥平面;
(Ⅲ)求平面与平面所成的锐二面角的大小.
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.图是甲流水线样本的频率分布直方图,表是乙流水线样本频数分布表.
(Ⅰ) 若以频率作为概率,试估计从甲流水线上任取件产品,求其中合格品的件数的数学期望;
(Ⅱ)从乙流水线样本的不合格品中任意取件,求其中超过合格品重量的件数的分布列;
(Ⅲ)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关” .
|
甲流水线 |
乙流水线 |
合计 |
合格品 |
|
||
不合格品 |
|
||
合 计 |
|
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
附:下面的临界值表供参考:
(参考公式:,其中)
已知函数 (I)求的单调递增区间;(II)在中,三内角的对边分别为,已知,成等差数列,且,求的值.
已知数列满足:,,数列满足,.(Ⅰ)求数列的通项; (Ⅱ)求证:数列为等比数列;并求数列的通项公式.
给出定义:若(其中为整数),则叫做离实数最近的整数,记[来作,在此基础上给出下列关于函数的四个命题: ①函数=的定义域为,值域为;②函数=在上是增函数;③函数=是周期函数,最小正周期为;
④数=的图象关于直线()对称.其中正确命题的序号是__
设实数满足约束条件若目标函数的最大值为,则的最小值为___________