(本题满分13分)
已知数列满足,数列满足,数列满足
(1)求数列的通项公式;
(2)试比较的大小,并说明理由;
(3)我们知道数列如果是等差数列,则公差是否会小于等于一个常数k呢?若会,求出k的取值范围;若不会,请说明理由。
(本题满分13分)
如图,设抛物线的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动。
(1)当m=1时,求椭圆C2的方程;
(2)当的边长恰好是三个连续的自然数时,求面积的最大值。
(本题满分13分)
如图,在一条笔直的高速公路MN的同旁有两上城镇A、B,它们与MN的距离分别是,A、B在MN上的射影P、Q之间距离为12km,现计划修普通公路把这两个城镇与高速公路相连接,若普通公路造价为50万元/km;而每个与高速公路连接的立交出入口修建费用为200万元。设计部门提交了以下三种修路方案:
方案①:两城镇各修一条普通公路到高速公路,并各修一个立交出入口;
方案②:两城镇各修一条普通公路到高速公路上某一点K,并在K点修一个公共立交出入口;
方案③:从A修一条普通公路到B,现从B修一条普通公路到高速公路,也只修一个立交出入口。
请你为这两个城镇选择一个省钱的修路方案。
(本题满分12分)
如图,在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点。
(1)求证:;
(2)求二面角D—CB1—B的平面角的正切值。
(本题满分12分)
在某次考试中共有12道选择题,每道选择题有4个选项,其中只有一个是正确的,评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”。某考生每道题给出一个答案,并已确定有9道题的答案是正确的,而其余题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意只能乱猜,试求出该考生;
(1)选择题得60分的概率;
(2)选择题所得分数的数学期望。
.(本题满分12分)
设函数
(1)求函数的最小正周期及其在区间上的值域;
(2)记的内角A、B、C的对边分别为,若且,求角B的值。